<var id="pl157"></var>
<cite id="pl157"><noframes id="pl157"><thead id="pl157"><strike id="pl157"><progress id="pl157"></progress></strike></thead>
<var id="pl157"><span id="pl157"></span></var>
<var id="pl157"><video id="pl157"><menuitem id="pl157"></menuitem></video></var>
<cite id="pl157"><video id="pl157"></video></cite><ins id="pl157"></ins>
<cite id="pl157"><video id="pl157"><menuitem id="pl157"></menuitem></video></cite>
<cite id="pl157"><span id="pl157"></span></cite><var id="pl157"><video id="pl157"><thead id="pl157"></thead></video></var>
<cite id="pl157"><video id="pl157"><menuitem id="pl157"></menuitem></video></cite>
<var id="pl157"><span id="pl157"><menuitem id="pl157"></menuitem></span></var><cite id="pl157"><span id="pl157"><var id="pl157"></var></span></cite>
<var id="pl157"><span id="pl157"></span></var>
<ins id="pl157"><span id="pl157"></span></ins>
<ins id="pl157"><video id="pl157"></video></ins><ins id="pl157"></ins>
<var id="pl157"></var> <cite id="pl157"><video id="pl157"><menuitem id="pl157"></menuitem></video></cite>
<ins id="pl157"></ins>
<ins id="pl157"></ins>
<var id="pl157"></var>
<cite id="pl157"></cite><del id="pl157"></del>
<cite id="pl157"><video id="pl157"></video></cite>
<menuitem id="pl157"></menuitem>
<var id="pl157"></var>
<menuitem id="pl157"></menuitem>
<cite id="pl157"></cite>
<progress id="pl157"><ruby id="pl157"><th id="pl157"></th></ruby></progress><var id="pl157"></var>
<ins id="pl157"><noframes id="pl157"><var id="pl157"></var>
<ins id="pl157"><span id="pl157"></span></ins><cite id="pl157"></cite>
<cite id="pl157"><span id="pl157"></span></cite>
posts - 419, comments - 576, trackbacks - 0, articles - 0

04 2014 档案

     摘要: Abstract. In mathematics a Voronoi diagram is a way of dividing space into a number of regions. A set of points, called seeds, sites, or generators is specified beforehand and for each seed there will be a correspoinding region consisting of all points closer to that seed than to any other. The regions are called Voronoi cells. It is dual to the Delaunay triangulation. It is named after Georgy Voronoy, and is also called a Voronoi tessellation, a Voronoi decomposition, a Voronoi partition, or a   阅读全文

posted @ 2014-04-30 22:07 eryar 阅读(1741) | 评论 (0)  编辑 |

     摘要: IsoAlgo stands for piping Isometric drawing generation Algorithm. It can generate piping isometric drawings in DXF format from PCF1. IsoAlgo reads the Piping Component File(PCF). The PCF is a human readable text file containing physical and logical data on each piping object in the pipeline.   阅读全文

posted @ 2014-04-27 22:58 eryar 阅读(1912) | 评论 (2)  编辑 |

     摘要: IsoAlgo-Piping Isometric drawing generation Algorithms.
IsoAlgo can generate piping isometrics drawings from PCF to DXF.

For more information about IsoAlgo, please visit: http://code.google.com/p/isoalgo/
Any feedback is welcome, please send email to the author: [email protected]

  阅读全文

posted @ 2014-04-27 11:20 eryar 阅读(2406) | 评论 (0)  编辑 |

     摘要: Abstract. AVEVA Review is used to 3D model visualization for plant or ship design, construction and operation. Taking data from a range of 3D design systems, AVEVA Review delivers a virtual reality view of a plant or ship which users from all disciplines can freely navigate to view areas of interest, communicate ideas or undertake reviews. Use AVEVA .Net can extract model from DESIGN database, and use AnyCAD .Net can visualize the model. This paper mainly focus on the usage of AnyCAD .Net, and a  阅读全文

posted @ 2014-04-17 20:56 eryar 阅读(2924) | 评论 (0)  编辑 |

     摘要: Abstract. C++ lets us redefine the meaning of the operators when applied to objects. It also lets us define conversion operations for class types. Class-type conversions are used like the built-in conversions to implicitly convert an object of one type to another type when needed. A conversion operator provides a way for you to define how an object can be converted automatically to a different type. The paper gives some conversion operators examples in OpenCascade.

Key words. OpenCascad  阅读全文

posted @ 2014-04-12 19:21 eryar 阅读(1462) | 评论 (0)  编辑 |

     摘要: Use Model Data Exchange Addin to export structure models for PDMS.
配置方法见:http://www.kffa.tw/eryar/archive/2013/05/01/199875.html
更新记录:http://www.kffa.tw/eryar/archive/2013/09/11/203182.html  阅读全文

posted @ 2014-04-10 20:30 eryar 阅读(1401) | 评论 (0)  编辑 |

     摘要: Abstract. Rendering a generic surface is a two steps process: first, computing the points that will form the mesh of the surface and then, send this mesh to 3D API. Use the Triangle to triangulate the parametric space and then lifting map to the model 3D space. This is the main method to visualize the generic shaded surface. This paper show the OpenCascade triangulation of the parametric space and the map result: mesh in 3D model space. Use the method can visualize a generic surface.

K  阅读全文

posted @ 2014-04-06 14:56 eryar 阅读(4068) | 评论 (6)  编辑 |

<var id="pl157"></var>
<cite id="pl157"><noframes id="pl157"><thead id="pl157"><strike id="pl157"><progress id="pl157"></progress></strike></thead>
<var id="pl157"><span id="pl157"></span></var>
<var id="pl157"><video id="pl157"><menuitem id="pl157"></menuitem></video></var>
<cite id="pl157"><video id="pl157"></video></cite><ins id="pl157"></ins>
<cite id="pl157"><video id="pl157"><menuitem id="pl157"></menuitem></video></cite>
<cite id="pl157"><span id="pl157"></span></cite><var id="pl157"><video id="pl157"><thead id="pl157"></thead></video></var>
<cite id="pl157"><video id="pl157"><menuitem id="pl157"></menuitem></video></cite>
<var id="pl157"><span id="pl157"><menuitem id="pl157"></menuitem></span></var><cite id="pl157"><span id="pl157"><var id="pl157"></var></span></cite>
<var id="pl157"><span id="pl157"></span></var>
<ins id="pl157"><span id="pl157"></span></ins>
<ins id="pl157"><video id="pl157"></video></ins><ins id="pl157"></ins>
<var id="pl157"></var> <cite id="pl157"><video id="pl157"><menuitem id="pl157"></menuitem></video></cite>
<ins id="pl157"></ins>
<ins id="pl157"></ins>
<var id="pl157"></var>
<cite id="pl157"></cite><del id="pl157"></del>
<cite id="pl157"><video id="pl157"></video></cite>
<menuitem id="pl157"></menuitem>
<var id="pl157"></var>
<menuitem id="pl157"></menuitem>
<cite id="pl157"></cite>
<progress id="pl157"><ruby id="pl157"><th id="pl157"></th></ruby></progress><var id="pl157"></var>
<ins id="pl157"><noframes id="pl157"><var id="pl157"></var>
<ins id="pl157"><span id="pl157"></span></ins><cite id="pl157"></cite>
<cite id="pl157"><span id="pl157"></span></cite>
快三3稳赚技巧钱绝招
<var id="pl157"></var>
<cite id="pl157"><noframes id="pl157"><thead id="pl157"><strike id="pl157"><progress id="pl157"></progress></strike></thead>
<var id="pl157"><span id="pl157"></span></var>
<var id="pl157"><video id="pl157"><menuitem id="pl157"></menuitem></video></var>
<cite id="pl157"><video id="pl157"></video></cite><ins id="pl157"></ins>
<cite id="pl157"><video id="pl157"><menuitem id="pl157"></menuitem></video></cite>
<cite id="pl157"><span id="pl157"></span></cite><var id="pl157"><video id="pl157"><thead id="pl157"></thead></video></var>
<cite id="pl157"><video id="pl157"><menuitem id="pl157"></menuitem></video></cite>
<var id="pl157"><span id="pl157"><menuitem id="pl157"></menuitem></span></var><cite id="pl157"><span id="pl157"><var id="pl157"></var></span></cite>
<var id="pl157"><span id="pl157"></span></var>
<ins id="pl157"><span id="pl157"></span></ins>
<ins id="pl157"><video id="pl157"></video></ins><ins id="pl157"></ins>
<var id="pl157"></var> <cite id="pl157"><video id="pl157"><menuitem id="pl157"></menuitem></video></cite>
<ins id="pl157"></ins>
<ins id="pl157"></ins>
<var id="pl157"></var>
<cite id="pl157"></cite><del id="pl157"></del>
<cite id="pl157"><video id="pl157"></video></cite>
<menuitem id="pl157"></menuitem>
<var id="pl157"></var>
<menuitem id="pl157"></menuitem>
<cite id="pl157"></cite>
<progress id="pl157"><ruby id="pl157"><th id="pl157"></th></ruby></progress><var id="pl157"></var>
<ins id="pl157"><noframes id="pl157"><var id="pl157"></var>
<ins id="pl157"><span id="pl157"></span></ins><cite id="pl157"></cite>
<cite id="pl157"><span id="pl157"></span></cite>
<var id="pl157"></var>
<cite id="pl157"><noframes id="pl157"><thead id="pl157"><strike id="pl157"><progress id="pl157"></progress></strike></thead>
<var id="pl157"><span id="pl157"></span></var>
<var id="pl157"><video id="pl157"><menuitem id="pl157"></menuitem></video></var>
<cite id="pl157"><video id="pl157"></video></cite><ins id="pl157"></ins>
<cite id="pl157"><video id="pl157"><menuitem id="pl157"></menuitem></video></cite>
<cite id="pl157"><span id="pl157"></span></cite><var id="pl157"><video id="pl157"><thead id="pl157"></thead></video></var>
<cite id="pl157"><video id="pl157"><menuitem id="pl157"></menuitem></video></cite>
<var id="pl157"><span id="pl157"><menuitem id="pl157"></menuitem></span></var><cite id="pl157"><span id="pl157"><var id="pl157"></var></span></cite>
<var id="pl157"><span id="pl157"></span></var>
<ins id="pl157"><span id="pl157"></span></ins>
<ins id="pl157"><video id="pl157"></video></ins><ins id="pl157"></ins>
<var id="pl157"></var> <cite id="pl157"><video id="pl157"><menuitem id="pl157"></menuitem></video></cite>
<ins id="pl157"></ins>
<ins id="pl157"></ins>
<var id="pl157"></var>
<cite id="pl157"></cite><del id="pl157"></del>
<cite id="pl157"><video id="pl157"></video></cite>
<menuitem id="pl157"></menuitem>
<var id="pl157"></var>
<menuitem id="pl157"></menuitem>
<cite id="pl157"></cite>
<progress id="pl157"><ruby id="pl157"><th id="pl157"></th></ruby></progress><var id="pl157"></var>
<ins id="pl157"><noframes id="pl157"><var id="pl157"></var>
<ins id="pl157"><span id="pl157"></span></ins><cite id="pl157"></cite>
<cite id="pl157"><span id="pl157"></span></cite>
体彩顶呱刮代码图 欢乐斗地主怎么创房间 兴平特产商贸公司 那种彩票奖金高 江苏7位数18022期号码 英超各队球衣 哪个游戏平台有十三水 福彩欢乐生肖玩法 澳洲幸运5计划app 六肖中特准资料 山东十一选五走势图网易 平特乾坤卦图库期 上海时时乐今天 广东36选7中奖故事 一肖中平特怎么赔